Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Front Immunol ; 15: 1369626, 2024.
Article in English | MEDLINE | ID: mdl-38690273

ABSTRACT

Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Germinal Center/immunology
2.
Org Biomol Chem ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738449

ABSTRACT

This manuscript describes the synthesis of γ-lactam from the nitrogen insertion reaction of cyclobutanones using an oxime as an aminating reagent with a catalytic amount of Brønsted acid. This method was employed with a more stable oxime reagent, which is a precursor analog of hydroxylamine derivatives with explosive properties. The reaction was tolerated by various substituted cyclobutanones and less strained five- or six-membered ketones. The obtained γ-lactam products could be transformed into γ-aminobutyric acid derivatives via ring-opening hydrolysis. The reaction mechanism is discussed from the perspective of the isotope effect, etc.

3.
Clin Exp Dermatol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641554

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has been strongly recommended as an excellent alternative treatment for Bowen's disease (BD). However, reported data on 5-aminolevulinic acid-mediated PDT (ALA-PDT) with red light irradiation are limited and the long-term effectiveness remains to be determined, especially in dark-skinned populations. METHODS: Medical records of BD patients who received ALA-PDT with red light irradiation between February 2011 and June 2021 were reviewed and summarized. Univariate and multivariate analyses of clinically relevant variables that may affect treatment outcomes were performed to identify risk predictors. RESULTS: The overall clearance rate of 122 BD lesions was 89.3% with a median follow-up time of 36 months. The correlation between the effectiveness and fluorescence intensity of pre-PDT or PDT sessions was statistically significant after eliminating the interference of confounding factors. All recurrences occurred in the first two years following ALA-PDT. CONCLUSION: ALA-PDT is an effective treatment for BD in the skin of color patients. Well-executed operation and effective pre-treatment are the determinants of effectiveness. Fluorescence intensity of pre-PDT appeared to be a significant predictor of final effectiveness. In addition, two years of follow-up is necessary following ALA-PDT.

4.
Article in English | MEDLINE | ID: mdl-38664320

ABSTRACT

The highly stable biomass structure formed by cellulose, hemicellulose, and lignin results in incomplete conversion and carbonization under hydrothermal conditions. In this study, pretreated corn straw hydrochar (PCS-HC) was prepared using a low-temperature alkali/urea combination pretreatment method. The Mass loss rate of cellulose, hemicellulose, and lignin from pretreated biomass, as well as the effects of the pretreatment method on the physicochemical properties of PCS-HC and the adsorption performance of PCS-HC for alkaline dyes (rhodamine B and methylene blue), were investigated. The results showed that the low-temperature NaOH/urea pretreatment effectively disrupted the stable structure formed by cellulose, hemicellulose, and lignin. NaOH played a dominant role in solubilizing cellulose and the combination of low temperature and urea enhanced the ability of NaOH to remove cellulose, hemicellulose, and lignin. Compared to the untreated hydrochar, PCS-HC exhibited a rougher surface, a more abundant pore structure, and a larger specific surface area. The unpretreated hydrochar exhibited an adsorption capacity of 64.8% for rhodamine B and 66.32% for methylene blue. However, the removal of rhodamine B and methylene blue by PCS-BC increased to 89.12% and 90.71%, respectively, under the optimal pretreatment conditions. The PCS-HC exhibited a favorable adsorption capacity within the pH range of 6-9. However, the presence of co-existing anions such as Cl-, SO42-, CO32-, and NO3- hindered the adsorption capacity of PCS-HC. Among these anions, CO32- exhibited the highest level of inhibition. Chemisorption, including complexation, electrostatic attraction, and hydrogen bonding, were the primary mechanism for dye adsorption by PCS-HC. This study provides an efficient method for utilizing agricultural waste and treating dye wastewater.

5.
Pediatr Cardiol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602518

ABSTRACT

The relationships between maternal exposure to endocrine-disrupting chemicals (EDCs) and congenital heart diseases (CHD) are not elucidated yet. The exposure levels of EDCs are generally estimated based on self-reported questionnaires or occupational exposure evaluations in the literature. Therefore, a study based on epidemiological data from human biospecimens is required to provide stronger evidence between maternal exposure to EDC and CHD. Embase, Pubmed, Scopus, and the Cochrane Library databases were searched for related research which provided risk estimates regarding the relationships between maternal EDC exposure and CHD in human offspring. Baseline characteristics and outcomes of CHD were extracted from each included study. Odds ratios (ORs) with 95% confidence intervals (CIs) were pooled to calculate the overall estimates of CHD. Subgroup and meta-regression analyses were performed to identify the sources of heterogeneity. Bootstrapping techniques were used in analyses where several studies originated from a similar population. A total of seventeen studies were involved in the meta-analyses. Maternal EDC exposure was significantly related to CHD in offspring (OR 2.15; 95%CI 1.64 to 2.83). EDC exposure was significantly associated with septal defects (OR 2.34; 95%CI 1.77 to 3.10), conotruncal defects (OR 2.54; 95%CI 1.89 to 3.43), right ventricular outflow tract obstruction (OR 2.65; 95%CI 1.73 to 4.07), left ventricular outflow tract obstruction (OR 3.58; 95%CI 2.67 to 4.79), anomalous pulmonary venous return (OR 2.31; 95%CI 1.34 to 4.00), and other heart defects (OR 2.49; 95%CI 1.75 to 3.54). In addition, maternal exposure to heavy metals, which included lead (OR 2.19; 95%CI 1.29 to 3.71), cadmium (OR 1.81; 95%CI 1.28 to 2.56), mercury (OR 2.23; 95%CI 1.13 to 4.44), and manganese (OR 2.65; 95%CI 1.48 to 4.74), increased risks for CHD significantly. In conclusion, based on the latest evidence, maternal EDC exposure may increase CHD risks in human offspring, especially in heavy metal exposure conditions.

6.
Exp Mol Med ; 56(3): 747-759, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531963

ABSTRACT

Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.


Subject(s)
Intervertebral Disc Degeneration , Mitophagy , Protein Deglycase DJ-1 , Animals , Rats , Apoptosis , Hexokinase/genetics , Hexokinase/pharmacology , Hexokinase/therapeutic use , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Mitophagy/genetics , Mitophagy/physiology , Proto-Oncogene Proteins c-akt , Ubiquitin-Protein Ligases/genetics , Protein Deglycase DJ-1/metabolism
7.
Adv Mater ; : e2313953, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400833

ABSTRACT

Engineered bacteria are widely used in cancer treatment because live facultative/obligate anaerobes can selectively proliferate at tumor sites and reach hypoxic regions, thereby causing nutritional competition, enhancing immune responses, and producing anticancer microbial agents in situ to suppress tumor growth. Despite the unique advantages of bacteria-based cancer biotherapy, the insufficient treatment efficiency limits its application in the complete ablation of malignant tumors. The combination of nanomedicine and engineered bacteria has attracted increasing attention owing to their striking synergistic effects in cancer treatment. Engineered bacteria that function as natural vehicles can effectively deliver nanomedicines to tumor sites. Moreover, bacteria provide an opportunity to enhance nanomedicines by modulating the TME and producing substrates to support nanomedicine-mediated anticancer reactions. Nanomedicine exhibits excellent optical, magnetic, acoustic, and catalytic properties, and plays an important role in promoting bacteria-mediated biotherapies. The synergistic anticancer effects of engineered bacteria and nanomedicines in cancer therapy are comprehensively summarized in this review. Attention is paid not only to the fabrication of nanobiohybrid composites, but also to the interpromotion mechanism between engineered bacteria and nanomedicine in cancer therapy. Additionally, recent advances in engineered bacteria-synergized multimodal cancer therapies are highlighted.

8.
J Med Chem ; 67(4): 2438-2465, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38321747

ABSTRACT

Bruton's tyrosine kinase (BTK) is an attractive target in inflammatory and autoimmune diseases. However, the effectiveness of BTK inhibitors is limited by side effects and drug resistance. In this study, we report the development of novel BTK proteolysis targeting chimeras (PROTACs) with different classes of BTK-targeting ligands (e.g., spebrutinib) other than ibrutinib. Compound 23 was identified as a potent and fast BTK PROTAC degrader, exhibiting outstanding degradation potency and efficiency in Mino cells (DC50, 4 h = 1.29 ± 0.3 nM, t1/2, 20 nM = 0.59 ± 0.20 h). Furthermore, compound 23 forms a stable ternary complex, as confirmed by the HTRF assay. Notably, 23 down-regulated the BTK-PLCγ2-Ca2+-NFATc1 signaling pathway activated by RANKL, thus inhibiting osteoclastogenesis and attenuating alveolar bone resorption in a mouse periodontitis model. These findings suggest that compound 23 is a potent and promising candidate for osteoclast-related inflammatory diseases, expanding the potential of BTK PROTACs.


Subject(s)
Osteoclasts , Proteolysis Targeting Chimera , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Osteoclasts/metabolism , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism
9.
Front Oncol ; 14: 1319819, 2024.
Article in English | MEDLINE | ID: mdl-38347841

ABSTRACT

Background: Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy, commonly affecting the external genitalia and perianal area of the elderly with unclear pathogenesis. Metabolomics provides a novel perspective for uncovering the metabolic mechanisms of a verity of cancers. Materials and methods: Here, we explored the metabolome of EMPD using an untargeted strategy. In order to further investigate the potential relationship between metabolites and gene expression, we re-analyzed the gene expression microarray data (GSE117285) using differential expression analysis and functional enrichment analyses. Results: Results showed that a total of 896 metabolites were identified and 87 metabolites including 37 upregulated and 50 downregulated significantly in EMPD were sought out. In the following feature selection analyses, four metabolites, namely, cyclopentyl fentanyl-d5, LPI 17:0, guanosine-3',5'-cyclic monophosphate, kynurenine (KYN, high in EMPD) were identified by both random forest and support vector machine analyses. We then identified 1,079 dysfunctional genes: 646 upregulated and 433 downregulated in EMPD. Specifically, the tryptophan-degrading enzyme including indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) were also increased. Generally, cancers exhibit a high expression of IDO1 and TDO2 to catabolize tryptophan, generating abundant KYN. Moreover, we also noticed the abnormal activation of sustaining proliferative signaling in EMPD. Conclusion: In conclusion, this study was the first to reveal the metabolome profile of EMPD. Our results demonstrate that IDO1/TDO2-initialized KYN metabolic pathway may play a vital role in the development and progression of EMPD, which may serve as a potential therapeutic target for treating EMPD.

10.
Int J Biol Macromol ; 260(Pt 2): 129594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253147

ABSTRACT

Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.


Subject(s)
Starch , Succinic Anhydrides , Succinic Anhydrides/chemistry , Starch/chemistry , Amylose/chemistry , X-Ray Diffraction
11.
Environ Toxicol ; 39(2): 952-964, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975621

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.


Subject(s)
Diethylhexyl Phthalate , Melatonin , Male , Mice , Animals , Testis , Melatonin/pharmacology , Diethylhexyl Phthalate/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Oxidative Stress , Apoptosis
12.
J Adv Res ; 56: 31-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36933884

ABSTRACT

INTRODUCTION: It has been shown that polystyrenenanoplastic (PS-NP) exposure induces toxicity in the lungs. OBJECTIVES: This study aims to provide foundational evidence to corroborate that ferroptosis and abnormal HIF-1α activity are the main factors contributing to pulmonary dysfunction induced by PS-NP exposure. METHODS: Fifty male and female C57BL/6 mice were exposed to distilled water or 100 nm or 200 nm PS-NPs via intratracheal instillation for 7 consecutive days. Hematoxylin and eosin (H&E) and Masson trichrome staining were performed to observe the histomorphological changes in the lungs. To clarify the mechanisms of PS-NP-induced lung injury, we used 100 µg/ml, 200 µg/ml and 400 µg/ml 100 or 200 nm PS-NPs to treat the human lung bronchial epithelial cell line BEAS-2B for 24 h. RNA sequencing (RNA-seq) of BEAS-2B cells was performed following exposure. The levels of glutathione, malondialdehyde, ferrous iron (Fe2+), and reactive oxygen species (ROS) were measured. The expression levels of ferroptotic proteins were detected in BEAS-2B cells and lung tissues by Western blotting. Western blotting, immunohistochemistry, and immunofluorescence were used to evaluate the HIF-1α/HO-1 signaling pathway activity. RESULTS: H&E staining revealed substantial perivascular lymphocytic inflammation in a bronchiolocentric pattern, and Masson trichrome staining demonstrated critical collagen deposits in the lungs after PS-NP exposure. RNA-seq revealed that the differentially expressed genes in PS-NP-exposed BEAS-2B cells were enriched in lipid metabolism and iron ion binding processes. After PS-NP exposure, the levels of malondialdehyde, Fe2+, and ROS were increased, but glutathione level was decreased. The expression levels of ferroptotic proteins were altered significantly. These results verified that PS-NP exposure led to pulmonary injury through ferroptosis. Finally, we discovered that the HIF-1α/HO-1 signaling pathway played an important role in regulating ferroptosis in the PS-NP-exposed lung injury. CONCLUSION: PS-NP exposure caused ferroptosis in bronchial epithelial cells by activating the HIF-1α/HO-1 signaling pathway, and eventually led to lung injury.


Subject(s)
Ferroptosis , Lung Injury , Mice , Humans , Animals , Female , Male , Mice, Inbred C57BL , Lung Injury/chemically induced , Reactive Oxygen Species , Bronchi , Eosine Yellowish-(YS) , Glutathione , Iron , Malondialdehyde
14.
Nano Lett ; 24(1): 519-524, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38126338

ABSTRACT

This work demonstrates that targeting ligand density on nanoparticles can affect interactions between the nanoconstructs and cell membrane receptors. We discovered that when the separation between covalently grafted DNA aptamers on gold nanostars was comparable to the distance between binding sites on a receptor dimer (matched density; MD), nanoconstructs exhibited a higher selectivity for binding to the dimeric form of the protein. Single-particle dynamics of MD nanoconstructs showed slower rotational rates and larger translational footprints on cancer cells expressing more dimeric forms of receptors (dimer+) compared with cells having more monomeric forms (dimer-). In contrast, nanoconstructs with either increased (nonmatched density; NDlow) or decreased ligand spacing (NDhigh) had minimal changes in dynamics on either dimer+ or dimer- cells. Real-time, single-particle analyses can reveal the importance of nanoconstruct ligand density for the selective targeting of membrane receptors in live cells.


Subject(s)
Nanoparticles , Ligands , Cell Membrane/metabolism , Nanoparticles/chemistry , Polymers/metabolism , Binding Sites
15.
J Immunother Cancer ; 11(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38040418

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop postnatally in non-lymphoid tissues and are associated with pathological conditions. TLS typically comprise B-cell follicles containing and are encompassed by T- cell zones and dendritic cells. The prognostic and predictive value of TLS in the tumor microenvironment (TME) as potential mediators of antitumor immunity have gained interest. However, the precise relationship between localization and maturation of TLS and the clinical outcome of their presence in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated. METHODS: Immunohistochemistry and multispectral fluorescence were used to evaluate the TLS heterogeneity along with TME cell-infiltrating characterizations. A thorough investigation of the prognostic implications of the TLS heterogeneity in 395 patients with ccRCC from two independent cohorts was conducted. Associations between TLS heterogeneity and immunologic activity were assessed by quantifying the immune cell infiltration. RESULTS: Infiltrated TLS were identified in 34.2% of the ccRCC samples (N=395). These TLS were found to be tumor-proximal, tumor-distal, or both in 37.8%, 74.1%, and 11.9% of the TLS-positive cases, respectively. A higher proportion of early TLS was found in tumor-distal TLS (p=0.016), while tumor-proximal TLS primarily comprised secondary follicle-like structures (p=0.004). In the main study cohort (Fudan University Shanghai Cancer Center, N=290), Kaplan-Meier analyses revealed a significant correlation between the presence of tumor-proximal TLS and improved progression-free survival (PFS, p<0.001) and overall survival (OS, p=0.002). Conversely, the presence of tumor-distal TLS was associated with poor PFS (p=0.02) and OS (p=0.021). These findings were further validated in an external validation set of 105 patients with ccRCC. Notably, the presence of mature TLS (namely secondary follicle-like TLS, with CD23+ germinal center) was significantly associated with better clinical outcomes in patients with ccRCC. Furthermore, novel nomograms incorporating the presence of tumor-proximal TLS demonstrated remarkable predictability for the 8-year outcomes of resected ccRCC (area under the curve >0.80). Additionally, ccRCC samples with tumor-distal TLS enriched with primary follicle-like TLS exhibited higher programmed death-ligand 1 tumor-associated macrophages levels and regulatory T cells infiltration in the tumor-distal region, indicative of a suppressive TME. CONCLUSION: This study for the first time elucidates the impact of TLS localization and maturation heterogeneities on the divergent clinical outcomes of ccRCC. The findings reveal that most TLS in ccRCC are located in the tumor-distal area and are associated with immature, immunosuppressive characterizations. Furthermore, our findings corroborate previous research demonstrating that tumor-proximal TLS were associated with favorable clinical outcomes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Renal Cell/pathology , China , Prognosis , Kidney Neoplasms/pathology , Tumor Microenvironment
16.
Nano Lett ; 23(23): 11260-11265, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38048438

ABSTRACT

This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.

17.
Front Endocrinol (Lausanne) ; 14: 1193556, 2023.
Article in English | MEDLINE | ID: mdl-38027192

ABSTRACT

In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.


Subject(s)
Enterochromaffin Cells , Ion Channels , Serotonin , Animals , Humans , Mice , Enterochromaffin Cells/metabolism , Intestines/metabolism , Intestines/physiology , Ion Channels/genetics , Ion Channels/metabolism , Serotonin/pharmacology , Serotonin/metabolism , Signal Transduction , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology
18.
ACS Appl Mater Interfaces ; 15(47): 54952-54965, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966900

ABSTRACT

Flexible sensors produced through three-dimensional (3D) printing have exhibited promising results in the context of underwater sensing detection (for applications in navigational vehicles and human activities). However, underwater vehicles and activities such as swimming and diving are highly susceptible to drag, which can cause negative impacts such as reduced speed and increased energy consumption. Additionally, microbial adhesion can shorten the service life of these vehicles. However, natural organisms are able to circumvent such problems, with shark skin offering excellent barrier properties and ruffled papillae providing effective protection against fouling. Here, we show that a sandwich system consisting of a spraying layer, conductive elastomer composite, and encapsulation layer can be printed for multifunctional integrated underwater sensors. The modulated viscoelastic properties of liquid metal form the foundation for printing features, while its pressure-activated properties offer the potential for switchable sensors. An integrated drag reduction and antifouling layer were created by combining the shark skin surface shield scale structure with the lotus leaf surface papillae structure. A 3D-printed flexible sensor was designed using our approach to monitor attitude changes and strain in underwater environments, showcasing its capabilities. Our printed sensors can reduce biological attachment density by more than 50% and reduce underwater drag by 8.6-10.3%.

19.
Chest ; 164(4): e89-e91, 2023 10.
Article in English | MEDLINE | ID: mdl-37805252

ABSTRACT

Dendritic fibromyxolipoma (DFML) is an uncommon benign tumor. We report the first DFML in the right thorax of a child. An 11-year-old girl was admitted because of a giant tumor in the right thorax. An enhanced chest CT scan indicated a thoracic mass with mild enhancement. Thoracoscopic biopsy revealed that the tumor was composed of stellate and spindle cells embedded within abundant myxoid stroma. Additionally, mature adipocytes, cytoplasmic dendritic processes, short strands of keloidal-type collagen, and plexiform blood vessels were observed. Immunohistochemical staining indicated positive for CD34 and BCL-2. DDIT3 alteration or MDM2 amplification were not observed. The diagnosis of DFML was considered, and complete tumorectomy was performed. In conclusion, definite diagnosis of DFML should be made according to the pathologic features. Accurate diagnosis is crucial to avoid overtreatment because DFML potentially can be mistaken for more aggressive neoplasms.


Subject(s)
Lipoma , Female , Child , Humans , Lipoma/diagnosis , Lipoma/surgery , Lipoma/pathology , Thorax , Immunohistochemistry , Diagnosis, Differential , Biopsy
20.
Front Microbiol ; 14: 1255525, 2023.
Article in English | MEDLINE | ID: mdl-37849921

ABSTRACT

Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in adult. However, whether ELS induces IBS in early life remains unclear. Methods: Separated cohort studies were conducted in neonatal male pups of C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice were scheduled to be evaluated for prime IBS-phenotypes, including visceral hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like behavior. Ileal contents and fecal samples were collected and analyzed by 16S rRNA gene sequencing and bacterial community analyses. Subcellular structures of intestinal epithelial, such as epithelial tight junctions and mitochondria, were observed under transmission electron microscopy. Results: MS induced visceral hypersensitivity and decreased total intestinal transit time from childhood to adulthood. In addition, MS induced intestinal hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, MS affected intestinal microbial composition from childhood to adulthood. Moreover, MS disrupted intestinal mitochondrial structure from childhood to adulthood. Conclusion: The study showed for the first time that MS induced IBS from early life to adulthood in mice. The disrupted intestinal mitochondrial structure and the significant dysbiosis of intestinal microbiota in early life may contribute to the initiation and progress of IBS from early life to adulthood.

SELECTION OF CITATIONS
SEARCH DETAIL
...